If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-8x-64=0
a = 10; b = -8; c = -64;
Δ = b2-4ac
Δ = -82-4·10·(-64)
Δ = 2624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2624}=\sqrt{64*41}=\sqrt{64}*\sqrt{41}=8\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{41}}{2*10}=\frac{8-8\sqrt{41}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{41}}{2*10}=\frac{8+8\sqrt{41}}{20} $
| X+1/8x=18 | | X+.1x=1.1 | | 83x+-38=83x+-38 | | 9x+4x+2+8=8x+3+4x | | 15x=100+10 | | 2x-5x(x-2)=13x | | 2(8x-1)+7(x+6)=-59 | | 48=6-2x | | (5x-3)/(2x+1)=11 | | x+(x/5)=24 | | 1/2(t)=3 | | -8x+3x-6x=0 | | 8x^2-64x+56=0 | | k/5.2+81.5=47.2 | | 2.5t+t=3+1.5t | | 5x–4=2x+5 | | (3x+6)^2=36 | | -3m/5=12 | | 4(x-12)=x+9 | | 16^x=1/65 | | 4(x-12(=x+9 | | 3x+7=-x-+ | | -2h+24=-30 | | (.5n-4)=14-10n | | 7t+2=8+6t | | x+(2/x)=4 | | 4a-12a=12 | | 4m-7^2=18 | | 7x+18+9x=8 | | -8+3=2x-21 | | -5x-10=2-(X=4) | | -7(3+2a)=15-18a |